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It is shown in this paper that in the volume-compressible medium (the motion 

of which is described by a scalar wave equation) the limiting mean pressure 

pulse is a harmonic function of position. For this reason the dynamic pressure and 

velocity fields computed according to the “incompressibility scheme” describe 

a certain integral asymptotics, for t +w , for the corresponding compressible 

medium. 

Experiments in [1] indicate that the motion of the continuous medium ac- 

companying the explosion, can be separated into two stages. The first stage, 

of a very short duration, is characterized by expansion of the stress wave and 

relatively small increases in the particle displacements. During this stage 

reflections appear and disruption may occur. During the second stage the mo- 

tion of the particles of the medium, which is already partially disrupted, is 

developed further. This is the ballistic stage during which ejection takes place 

in the nonunderground explosions, or throwing of projectiles when a directional 

explosion takes place. The velocity field developed by the end of the first 

stage, serves as the “initial” field for the ballistic stage. 

It is assumed that during the first stage the motion is mainly determined by 

the inertial resistance of the medium, the compressibility playing a secondary 

role. Since the pressure developed during the initial stage of the explosion is 

very large, it is reasonable to make another assumption that the tensile proper- 

ties of the medium are also of secondary importance and describe the state of 

stress by a spherical pressure tensor. Thus for the first stage we have the fol- 

lowing set of assumptions: (a) the medium is incompressible, (b) the medium 

is ideal (tangential stresses are absent) and (c) strains and displacements re- 

main small. We shall call the set of these hypotheses the “incompressibility 

scheme”. 

Using the framework of this scheme to consider some examples we find that 

the results of our analysis give, in a number of cases, a satisfactory agreement 

with experiments [2]. The nature of the incompressibility scheme can be clar- 

ified and its region of applicability indicated, by assessing its relation to the 

allied problems in which the wave propagation is taken into account. The pre- 

sent paper deals with one of the possible correlations. 

1. Let an arbitrary region I3 whose boundary is S , be specified. The boundary may 

consist of one or several piecewise smooth surfaces. The region B may extend to in- 

finity and a solution of the Dirichlet problem for the Laplace equation must exist for this 
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region. In addition, B is filled with an ideal compressible medium in which a purely 
linear (under small deformations) compression law 

dp / A? = -k2divv, k2 > 0 (1.1) 

where p (A!!, t) is the pressure and v (M, t) is the velocity of a particle, holds. 
Let the impulsive pressure 

P (Q, t) = f (Q, t), Q E S (1.2) 
f (Q, t) EE 0, t < 0, T < t 

be specified at the points of the boundary surface S . The initial conditions are assumed 
null 

p (M, 0) = 0, v (M, 0) = 0, M E B + S 

and our aim is to determine the pressure and velocity fields at t > 0. 
Using the equation of motion (in the linear approximation) 

pOdv I at + gradp = 0 (4 -3) 

and eliminating V (M, i?) from (1.1) and (1.3). we obtain for p (kf, t) the following 
wave equation : 

Ap---&%=(I, 
a2=G (1.4) 

where pa is the density, assumed to be constant, 

Thus the problem of determining the motion of the medium under the action of a 
specified load applied at the boundary, has been reduced to a mixed boundary value 
problem for a wave equation. When p (hf, t) has been found, the velocity field is 
obtained by the formula t 

~(44, t) = - + 
s 

gradp(M,T)dt (1.5) 
0 

The incompressibility scheme offers a simpler procedure. It considers the medium as 

incompressible and assumes that a characteristic time ‘G (T < 7) exists, at which the 
process is established. Then, for the pressure pulse n (M) 

rI (M) == ( p (M, t) dt 

0 

the condition of incompressibility implies that hi7 = 0. Relations (1.2) yield the 
boundary values for the pulse 

n(Q) = jl(QJ@t 
0 

As a result, the incompressibility scheme reduces the problem to the Dirichlet problem 
for the I.aplace equation. The problem proposed for the velocity field is 

v = --pow1 gradll 

(transposition of the integral and the derivative). The functions p and v computed in 

this manner are independent of time. This agrees with the supposition that the time in 
which the asymptotics of the process is developed, is extraordinarily short. 

2. We now introduce the pressure pulse KI (M, t) , the mean pressure pulse P (M, t) 
and the limiting mean pressure pulse PO (M) 
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We shall also consider the mean particle velocity V (hf, t) and the limiting mean 

particle velocity V, (M) 

v(.~~,t)=tSv(M,-c)dr, Vo(M) = lim V (ilf, t) 
f-+x 

We assume that the above limits exist: 

(2.2) 

The principal result of this paper consists of a proof of the following assertion : if 

p (&I, t) is a solution of (1.4) with the boundary conditions (1.2) and null initial con- 
ditions satisfying the limit relation (*) 

uniformly in B, then P, (M) 1s a function which is harmonic in B and assumes the 
following values at the boundary S : 

I 

In addition we haveV, (M) = --fjo_l grntl PO (M). ” 

Proof. We assume that the function P (M, t) is discontinuous, since the propaga- 

tion of the waves generated by a boundary (or interior point) pulse is accompanied by 
the propagation of the surfaces of discontinuity which are reflected from the boundary 

of B. Let N (M, t) be the number of the surfaces of discontinuity passing during the 
interval of time (0, t) through the point M. When the function I-’ (M, t) is differenti- 

ated with respect to the coordinates, the operation of differentiation cannot be simply 
inserted under the integral sign. Let us denote by tj (M) the instant at which the i th 

surface of discontinuity passes through the point Al, and split the interval of the inte- 
gration as follows : 

*) It is very probable that this condition is superfluous and arises naturally from the 
finite character and the boundedness of the boundary function. In the present paper 
however, this aspect of the problem is not considered. 
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Taking into account the dependence of the limits of integration on the coordinates, we 
find the Laplace operator of P (M, t) using the formula A = div (grad). We obtain 

AP(M,t)=g I-..- ti‘ j=l ( 7) {LPIjA~j+[~Iigradafj+2(gradpj.gradtj)}- 

--+i [Pljgradetj+ ~~A~(t--i)dr+~~ “rAp(t-r)dr+ 

j=l 0 j=l "ti 

The brackets denote the jumps in the value of the function at the surface of discontinu- 

ity. i.e. [Plj = Pj- - Pj’ , etc. Simplifications which can be introduced in this for- 
mula ensue from the following. The function p (JM, t) is a solution of (1.4), therefore 

The surface of discontinuity in the (x. !I. Z, t) -space is a characteristic surface, the 

equation of which is t = ti (M), therefore grad tl = uj i II where ni is a vector of the 
normal to the surface of discontinuity at the point M . From this follow 

1 ap 1 8P 
(grad I-‘. grad t j) = 7 all = y- x 

provided that s is the arc length counted along the ray (the ray is considered in the 

coordinate space). Collecting the like terms we obtain 

All terms in (2.3) except the last one are equal to zero. This follows from the conditions 
at the fronts at which the solutions of the wave equation become discontinuous, and which 

are known. The general theory of hyperbolic equations can be found in e. g. [3], ch. 4. 
We give a brief version of the derivation leading directly to the result in the required 

form. We introduce a radial, orthogonal ( a, b, .s)-coordinate system attached to some 
surface of discontinuity, where s denotes the arc length counted along the ray, while a 
and ji denote the curvilinear coordinates at the surface of discontinuity. The coordinate 
axes u = coust and b _ court are the lines of curvature on this surface. 

We introduce the following system of functions: 

‘1,; CT) = 
( 0, t > 0 

12, z < 0 
(k= 1. a. 3,...) 

We write p (M. 1) near the surface of discontinuity in the form of an expansion 

p (Jj. L) = p0-q) (S - Sl) I- PI-q1 (~ s - s,) )m . . . + po+q, (,?I - s) + pl+q~ (SI - s) -I- . . . (2.4) 

Here the plus and minus superscripts denote the limiting values at each side of the sur- 
face, the coefficients fk- and pk+ are functions of u, 13 and sr z at. The requirement 
that p (.bI, t) be a solution of (1.4) imposes certain conditions on the Coefficients Pb- 



and pk+ . These coefficients can be obtained by “substituting” the expansion (2.4) into 

Eq. (1.4). Let us denote the set of terms of the expansionthe leading term of whicil 

contains 11,;. by E (Ilk) , so that e. g. 

6 (ll]<) == “/<Ilk -I- “h.&ttlh.+r + “/&.Lzrlh.+z -t ... 

Inserting this into Eq. (1.4) we obtain 

From this follows the necessary condition 

Alternatively, taking into account the fact that 

“i I 1 
gl~;ld t j = -y 1 

-Itj = di\- (grad tj) = -~ 
3 ((1, H,,) 

a H,lI:, JS 
we obtain 

x~ () 

Thus (2.3) leads to the equation 

.1P (M, t) L p (M, t) i at (2.5) 

Let G (M, M1) be the Green’s function for the region B. Then from (2.5) follows 

(2.6) 

where H (M, t) is a function which is harmonic in B and satisfies the following bound- 

ary condition on S : 1 

I/ ;.5 = ; 
c 

/ (Q. T) (t ~ T) th 

t 

If f (0, t) is finite (as it was assumed) and uniformly bounded, then the boundary 

converge uniformly as 1 - 0. . This follows from the estimate (T < t, h) 
7 T 

1 I c n 
- 

I * 
~(Q,T)(/-T)r+-\ j(Q.T)(I,-T)dT 

0 0 

By the Weierstrass theorem, the harmonic function II (M, t) converges, as t -+ cx 
formly in 13 + S to the limit Ho (ill) which itself is also a harmonic function. 

integral in (2.6) tends to zero. Consequently 

litn 1’ (:I/. t) PO (M) = II, (V) 
1-x 

values 

, uni- 

The 

and P,, (M) is therefore a harmonic function satisfying the boundary condition P,,(, L 

J‘o (V)y QED ( * ) . 

*) Here the author expresses his gratitude to G. I. Eskin, who suggested that the proof 

could be simplified by introducing the concept of a generalized solution of a different- 

ial equation. 
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Now we shall show the relation connecting the limiting mean velocity v,, (M) with 
the limiting pulse P, (ill). Termwise integration of (1.3) yields 

Since [V] = (v-j- - vj+) [ 7 nj and grad tj = nj / a, we obtain, taking also into X- 

count the condition at the discontinuity [p]j = f)& IUlj, 

v (M, t) = - k grad ” p (!W, 7) dT 
; 
0” 

(2.T) 

Thus we found it possible to perform a simple interchange of the grad operator and 
the integral in spite of the *presence of the surfaces of discontinuity. The integral in 

(2.7) is continuous, hence 

v (My t) = - 4 grad (f i dT c p (&f, q) dq) 

Passing to the limit as t 3 foe, we obtain’ 
li 

V, (M) = --pow1 gradp, CM) 

3, What we have said, implies, that we can interpret the incompressibility scheme as 

an integral asymptotics at t -+ 00 for the corresponding problem on a compressible 
medium. However, the incompressibility scheme can be used successfully as an approxi- 

mate method only if the problem to be solved depends on the integral effect of the ex- 
plosion and, if the velocity of wave propagation is large. In other words, it is required 
that the time in which a wave covers the characteristic distance, is of the order of the 
time of action of the source. The observer perceives the final result without going into 

the details of the process. 
Carelessness in application of the scheme may lead to erroneous conclusions. In par- 

ticular, the kinetic energy calculated from the limiting velocity V, may differ from 

the actual limiting mean energy. This problem however requires a separate investigation. 

An analogous asymptotic approach to the problems of dynamic theory of elasticity 
could be of interest. Such an investigation would lead to formulating a static problem 

describing an integral asymptotics. 
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